SOLUTION FOR END-OF-TERM EXAM IN TERM 2 OF SCHOOL YEAR 2018-2019

SENTENCE 1 (2 M)
Full wave rectifier circuit

Average output voltage is calculated by:

$$
\mathrm{V} 0(\mathrm{dc})=\frac{2(22 \sqrt{ } 2-1.4)}{\pi}=18.91 \mathrm{~V}
$$

From Ohm 's law, load current has average value as: $I L=18.91 \mathrm{~V} / 0.1 \mathrm{~K}=\underline{189.1 \mathbf{m A}}$
SENTENCE 2 (2 M)

Clearly, Z3 OFF and Z1, Z2 ON at the same time.
In addition, permissible maximum current flowing through $\mathbf{Z 1}$ and $\mathbf{Z 2}$ in series is calculated as:
Izmax $=\mathbf{1 2 0} \mathbf{~ m W} / 5=\mathbf{2 4} \mathbf{~ m A}$ for ensuring reliability in service.
It can be noticed that output voltage has constant amount such as: $\mathrm{V} 0=10 \mathrm{~V}$
As It's known, current through resistor Rs keeps constant regardless of load resistance
In other words, it's represented as: Is $=(\mathbf{5 0 - 1 0}) / 1 \mathrm{~K}=\mathbf{4 0} \mathrm{mA}=$ const
Further more, according to Kirchhoff 's current law, it can be written as:

$$
\mathrm{Is}=\mathrm{Iz}+\mathrm{IL}=\text { const }
$$

Where, Iz is current through the branch including $\mathbf{Z 1}$ and $\mathbf{Z} 2$ connected in series.
And IL is current through load RL.
It's easy to see that, due to $\mathrm{Is}=$ const, we get the following expressions:

$$
\begin{aligned}
& \text { Is }=\text { Izmin }+ \text { ILmax }=\text { const } \\
& \text { Is }=\text { Izmax }+ \text { ILmin }=\text { const }
\end{aligned}
$$

As a result, maximum load current \quad ILmax $=40 \mathrm{~mA}$.
And minimum load current $\quad \operatorname{LLmin}=40-24=16 \mathrm{~mA}$
Briefly, the range of load current can be depicted such as: $16 \mathrm{~mA}<\mathrm{IL}<40 \mathrm{~mA}$

SENTENCE 4 (2M)

$$
\begin{aligned}
& V_{\mathrm{TH}}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) v_{\mathrm{CC}}=\mathbf{5 . 4} \mathbf{V} \\
& R_{\mathrm{TH}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\mathbf{6} \mathbf{K}
\end{aligned}
$$

$\mathrm{IB}=(5.4-0.7) /(6 \mathrm{~K}+10 \mathrm{~K})=0.29 \mathrm{~mA}$
Hence, $\mathrm{IC}=\mathrm{IE}=29 \mathrm{~mA}$
From KVL, it results in:
VCE $=$ VCC $-($ RC + RE $) I C=\mathbf{- 0 . 4 V}$
It can be concluded that BJT is in saturation mode.

As it's given, Vi and Vo include ac and dc components.
In details, $\mathbf{V i}=0.2 \exp (\mathbf{j 3 0})+0.5$
with $\mathrm{Vi}(\mathrm{ac})=0.2 \exp (\mathbf{j 3 0})[\mathrm{V}]$ and $\mathrm{Vi}(\mathrm{dc})=0.5 \mathrm{~V}$
$\mathrm{Vo}=4 \exp (\mathrm{j} 210)+\mathbf{1 0}$
where $\operatorname{Vo}(\mathrm{ac})=4 \exp (\mathrm{j} 210)=-4 \exp (\mathrm{j} 30)[\mathrm{V}]$
and $\mathrm{Vo}(\mathrm{dc})=10 \mathrm{~V}$
By superposition,
OPAMP 1 operating as noninverting amplifier and OPAMP 2 as inverting amplifier.
As a result, Vo1 $=6 \mathrm{Vi} 1$ and $\mathrm{Vo2}=-4 \mathrm{Vi} 2$
Hence, we get equation systems as following

$$
\begin{aligned}
& V i 1-V i 2=0.5 \\
& 6 V i 1+4 V i 2=10
\end{aligned}
$$

(dc quantities)

Vi1 - Vi2 $=0.2 \exp (j 30)$
$6 \mathrm{Vi} 1+4 \mathrm{Vi} 2=-4 \exp (\mathrm{j} 30) \quad(\mathrm{ac}$ quantities $)$

Solve with matrix of determinant, it can be described as:
Vo1 $=\mathbf{- 1 . 9 2} \exp (\mathbf{j 3 0})+7.2[\mathrm{~V}]$ and $\mathrm{Vo2}=2.08 \exp (\mathrm{j} 30)-2.8[\mathrm{~V}]$
SENTENCE 5 (2M)
Output Boolean expression is determined by: $Y=A B+\bar{B} C$
3 variable K map is represented as following:

